- Column 4 shows the percentage change for three rising boxes; in other words, the percentage increase in price required to achieve a 3-box reversal of Xs, which is 3%.
- Column 5 shows the percentage decrease in price from one box to the next. It is 0.99% in all cases.
- Column 6 shows the percentage change for three falling boxes; in other words, the percentage decrease in price required to achieve a 3-box reversal of Os, which is 2.97%.

Log value incremented by	Price is anti- log of the log value	\% change in price per box when price is rising	\% change for a 3-box reversal of X's	\% change in price per box when price is falling	\% change for a 3-box reversal of O's
6.274310084	530.760	1.00%	3.00%	0.99%	
6.264359753	525.505	1.00%	3.00%	0.99%	
6.254409422	520.302	1.00%	3.00%	0.99%	2.97%
6.244459091	515.151	1.00%	3.00%	0.99%	2.97%
6.23450876	510.050	1.00%		0.99%	2.97%
6.224558429	505.000	1.00%		0.99%	2.97%
6.214608098	500.000				

TABLE C-1: SHOWING HOW LOG SCALED CHARTS ARE CALCULATED

